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Deformation Analysis of Micro-Sized Material Using Strain
Gradient Plasticity
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To reflect the size effect of material (1~ 15 xm) during plastic deformation of polycrystalline

copper, a constitutive equation which includes the strain gradient plasticity theory and intrinsic

material length model is coupled with the finite element analysis and applied to plane strain

deformation problem. The method of least square has been used to calculate the strain gradient

at each element during deformation and the effect of distributed force on the strain gradient is

investigated as well. It shows when material size is less than the intrinsic material length (1.54

pm), its deformation behavior is quite different compared with that computed from the conven-

tional plasticity. The generation of strain gradient is greatly suppressed, but it appears again as

the material size increases. Results also reveal that the strain gradient leads to deformation

hardening. The distributed force plays a role to amplify the strain gradient distribution.
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1. Introduction

Recently, there have been many investigations
regarding plastic deformation behavior of materi-
al when its physical size scales down from tens of
microns to fraction of microns. As its size be-
comes small to such extent, stress at a point is
related to strain at the point and that in the neigh-
borhood of the point. The strain in the neighbor-
hood of the point is linked to the spatial gradient
of strain, i.e., strain gradient. The stress at a point
increases owing to the strain gradient (Nix, 1989 ;
Stelmashenko et al., 1993 ; Fleck et al., 1994 ;
Ma and Clarke, 1995 ; McElhaney et al., 1998 ;
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Stolken and Evans, 1998).

From the micro-mechanics viewpoint, this phe-
nomenon is attributable to the distribution of
dislocation density. When material is deformed
plastically, inhomogeneous dislocations exist as
a diverse form in the material. According to its
origination, it can be divided into two types of
dislocations, i.e., statistically stored dislocation
(SSD) and geometrically necessary dislocations
(GND) (Ashby, 1970 ; Arsenlis and Park, 1999).

Hutchinson (Fleck and Hutchinson, 1993 ; 1997)
reported that as a region where deformation oc-
curs or material size itself becomes very small, the
GND relative to the SSD increases. GND is in
connection with the gradient of plastic strain be-
cause the dislocation plays a role to keep the
compatibility of points (particles) undergoing a
local deformation. The theory that takes the strain
gradient into account is called the strain gradient
plasticity. On the other hand SSD is related with
plastic strain at continuum level since dislocation
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is distributed randomly in the statistical aspect. If
the material size increases, SSD becomes large
relatively compared with GND. Therefore, the
effect of strain gradient is negligible.

Research groups (Nix and Gao, 1998 ; Gao et
al., 1999 ; Huang et al., 2000a ; 2000b ; 2004 ; Qiu
et al., 2003) modeled GND mathematically and
expressed it in terms of strain gradient and conse-
quently could examine the effect of GND quanti-
tatively upon deformation. Thus, through incor-
porating this model with continuum mechanics,
they opened the way for the plastic deformation
analysis of micro-sized material. This approach
might be applied to the analysis of micro-forming,
micro-machining and residual stress analysis of
micro-electronic packaging.

Since the early strain gradient theory (Fleck
and Hutchinson, 1993 ; 1997 ; Nix and Gao, 1998 ;
Gao et al., 1999 ; Huang et al., 2000a ; 2000b ; Qiu
et al., 2003) involves higher order stress, the equi-
librium equation and boundary conditions are
essentially complicated, which cause difficulties
to obtain solution. Recently, Huang et al.(2004)
proposed a method to obtain the solution of the
problem with strain gradient effect included using
conventional equilibrium equation and boundary
conditions. Huang’s method gives an accurate
solution except at the very near surface of materi-
al as much as the method which involves the com-
plicated equilibrium equation and boundary con-
ditions. As a result, the strain gradient remains in
the constitutive equation only.

There are researches that have performed fi-
nite element analysis with strain gradient plasti-
city considered. These can be divided into two
groups ; analysis of micro-indentation (Begley
and Hutchinson, 1998 ; Shu and Fleck, 1998 ;
Huang et al., 2000c) and study of crack initiation
and propagation (Xia and Hutchinson, 1996 ;
Huang et al., 1999 ; Wei et al., 2004). In their
studies, finite element formulation was based on
higher-order continuum theory. But those ap-
proaches were the displacement-based finite ele-
ment formulation and hence might be problematic
when compressive deformation process such as
forging was dealted. When material is forged by a
tool (or die), the free surface of material before

deformation may come in contact with the tool.
This is called ‘fold’ and one of phenomenon
which represents the complexity of non-uniform
deformation during forging. Thus, deformation
analysis method which overcomes the ‘fold’ phe-
nomenon and include plastic strain gradient plas-
ticity has been highly disirable.

In this study, we employ the strain gradient
plasticity based on conventional continuum theo-
ry together with rigid—plastic finite element for-
mulation. Trait of this formulation is that the
mesh is updated continuously: Its nodal coor-
dinates during deformation is updated through
integration of nodal velocity calculated at each
time step. Hence, this method is suitable for the
case in which the amount of plastic deformation
is very large compared with that of elastic defor-
mation (Kobayashi et al., 1989).

We have examined the plastic deformation
behavior of material whose size is 1 gm~15 ym
when the material undergoes a compressive load-
ing. We have used the method of least square to
calculate strain gradient at each element during
deformation. To reflect the size effect of material,
an intrinsic material length parameter together
with the concept of strain gradient is included in
the constitutive equation. In addition, evolution
of geometrically necessary dislocations (GND)
dependent on the magnitude of distributed force
has been studied.

2. Strain Gradient Plasticity

Development stage of the strain gradient plas-
ticity theory is reviewed briefly and the consti-
tutive equation employed in this study is de-
scribed.

2.1 Background

Researchers in early stages tried to investigate
the size effect phenomenologically through ex-
periment. They carried out torsion, bending and
indentation tests, and focused deformation be-
havior for micrometer-sized and millimeter-sized
materials. In classical mechanics viewpoint, the
strain (stress) subject to an external loading re-
mains unchanged even though material size is
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different. If its size was reduced to fraction of
microns, it was proved that the stress in micro-
sized material was bigger than that of millimeter-
sized material. (Nix, 1989 ; Stelmashenko et al.,
1993 ; Fleck et al., 1994 ; Ma and Clarke, 1995 ;
McElhaney et al., 1998 ; Stolken and Evans, 1998)
This is called ’size effect’.

Fleck and Hutchinson (1993 ; 1997) attributed
this size effect to strain gradient which was not
considered in the conventional plasticity and
developed a higher order equilibrium equation to
reflect the size effect. But number of unknowns to
be determined increase as the order of equilibri-
um equation becomes high. Hence, they intro-
duced a parameter ‘intrinsic material length’ and
related it with the unknowns and finally deter-
mined the unknowns through experiments. How-
ever, the intrinsic material length was not cor-
related quantitatively with microstructure and/or
mechanical property of material, i.e., dislocation
density and flow stress.

Nix and Gao (1998) tried to make a quanti-
tative correlation for this parameter and the pro-
perties. Using Taylor’s dislocation model (Taylor,
1934 ; 1938), they proposed a flow stress equation
that contains the strain gradient and intrinsic
material length, and proved its accuracy through
micro-indentation test. Gao et al.(1999) extended
it to more general type of flow stress equation
which includes equivalent strain gradient and
intrinsic material length together and proposed
Mechanism-based Strain Gradient (MSG) plas-
ticity theory.

MSG theory (Gao et al.,, 1999 ; Huang et al.,
2000a) still includes, however, higher order equi-
librium equation and consequently needs addi-
tional boundary conditions to solve the equilibri-
um equation. Recently, Huang (2004) proposed
modified MSG plasticity that does not require
higher order equilibrium equation and additional
boundary conditions. In this approach, equilibri-
um equation and boundary condition are the same
with those of conventional continuum mechanics.
The difference is that the gradient of strain is
included in the constitutive equation. This ap-
proach has, however, limitation in application to
deformation analysis on the very near surface of

material.

2.2 Flow stress —dislocation density
Taylor (1934 ; 1938) expressed the flow stress
at continuum level in terms of several parameters
at micro level
o=Mrt
=Mapb/o

M, called Taylor factor, represents a conversion

(1)

factor between critical resolved shear stress, 7T
of crystalline slip system and the flow stress, 0.
In other words, it is a constant which makes
the isotropy in continuum level equivalent to the
anisotropy of crystal structure. In case of FCC
(Face Centered Cubic) metal, //=3.06 (Huang,
2004). @ is material dependent constant and s, b,
o represents shear modulus, magnitude of Burgers
vector and dislocation density.

The dislocation can be divided into statistically
stored dislocation (SSD), ps and geometrically
necessary dislocation (GND), p¢. Hence, Eq. (1)
can be rewritten as followings

6=Ma/,ubvps+pc (2)

The concept of SSD and GND was first proposed
by Ashby (1970).

2.3 Flow stress —intrinsic material length

If material is deformed statically at room tem-
perature, flow stress, ¢ is a function of strain.
When material size is reduced up to micrometer,
the flow stress is described as a function of strain,
strain gradient and intrinsic material length. This
is a basic principle of strain gradient plasticity
(Huang, 2004) and equation for the flow stress is
given in a form

5:Gref\/fw (3)

Ors and f (&) represents reference stress and work
hardening function of the yield stress curve ob-
tained from a tensile test. 7 is equivalent strain
gradient. y represents the intrinsic material length
and is a parameter which plays a role to make the
flow stress dependent upon the material size at
micro level.

Difference between characteristic and intrinsic
length is explained as followings. In one-dimen-
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Table 1 Material constants and intrinsic material
length for polycrystalline copper (Qiu et

al., 2003)
Material constants Symbols Values
Coefficient of the Taylor’s
. . a 0.3
dislocation model
Shear modulus )7 42 [GPa]

Coeftjicie*nt stress of yield Grer 688 [MPa]
function

Magni f the B
agnitude of the Burgers b 0.255 [nm]

vector
Intrinsic material length x 1.54 [pm]
* Yield function for polycrystalline copper was 688
=0.3
e,

sional deformation case, 7 in Eq.(3) can be
approximated as

xn=x(Ae/Ax)
= (x/Ax)Ae

respectively, the characteristic

(4)

Ax and y are,
length and intrinsic length of material. When Ax
have a similar order compared with y, x7 in-
fluences the flow stress behavior. But in case of
Ax>y, x7 in Eq. (4) comes close to zero. Hence,
Eq. (3) becomes the flow stress equation usually
employed in the conventional plasticity. Huang
et al.(2004) suggested an explicit form of y as
follows

_ 2
x=M77af2< = ) b (5)
Orer

where 7 is Nye factor which represents average
ratio of geometrically necessary dislocation to the
most efficient configuration of polycrystalline ma-
terial. In case of FCC polycrystalline material, 7
is about 1.9. For polycrystalline copper, its me-
chanical properties and intrinsic material length
are listed in Table 1. We know that size of x is a
few micrometers.

2.4 Flow stress in terms of macroscopic and
microscopic parameters

To express statistically stored dislocation, os

and geometrically necessary dislocation, o¢ in an

explicit form, we substitute Eq. (5) into Eq. (3).

After rearranging it, it is compared with Eq. (2).

It yields then an explicit form of statistically

stored dislocation and geometrically necessary
dislocation as follows

_ O'reff(é) 2
os=( ) (©)
ﬁmzfgf (7)

Equation (6) illustrates that the statistically sto-
red dislocation is described in terms of yielding
stress (Oresf (€)) and shear modulus (g) which
are material parameters defined at continuum
level and magnitude of Burgers vector (b) defin-
ed at micro level. Meanwhile, Eq. (7) shows that
the geometrically necessary dislocation is express-
ed in terms of parameters at micro level. Beside,
it shows that the equivalent strain gradient is a
direct measure of geometrically necessary dis-
location.

Consequently, the flow stress can be expressed
as a function of macroscopic and microscopic
parameters. Combination of Egs. (6), (7) and (2)

o= Ma'b\/

2.5 Strain gradient tensor and equivalent

yields

Oreff 7i
Ma/,ab +7’ b (8)

strain gradient
Problem left at this point is to determine the
equation for equivalent strain gradient, 7. To do
this, we begin with definition of strain

L st us) (9)

&ij= 2

Strain gradient is defined as twice differentiation
of displacement field

77ka uk ij ( 10)

Equation (9) is differentiated until u,;; is left. If
we change the index notation of it properly, Eq.
(10) can be then rewritten as

Niie=Einit Ejri— Eisn (11)
Similar to the equivalent strain in the conven-
tional plasticity, the concept of equivalent strain
gradient is also introduced. The equivalent strain

gradient is expressed in terms of three invariants
(Gao et al., 1999).

D=y c1ninnisnt Coiniint CsNisung:  (12)
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Application of Eq. (12) to three type of tests, i.e.,
plane strain bending, pure torsion and axi-sym-
metric void growth experiment yields algebraic
equations in terms of ¢;~c¢s. Solving the alge-
braic equations give ¢1=0, c;=1/4 and c¢3=0.
Therefore, the equivalent strain gradient is

_ /1
= Zvijkvijk (13)

2.6 Constitutive equation

In this study, a deformation process where elas-
tic strains are negligible compared with plastic
strain is considered. Hence, rigid—plastic consti-
tutive equation is employed. During plastic de-
formation, increment of strain, de;; is propor-
tional to a deviatoric stress at that instant

dei;=dAoi; (14)

dA is a constant proportional to whole deforma-
tion process. 0%; (=0:;— (0rr/3) 8:;) is deviatoric
stress. Using the conventional plasticity, we can
get the proportional constant and express devia-
toric stress as

0= 2(3 &ij (15)
3e

&;;and 5 represents strain rate tensor and equiva-
lent strain rate. Hence, substituting Eq. (8) into
Eq. (15) gives the constitutive equation used in
this study.

2.7 Boundary value problem with strain
gradient plasticity
Using the strain gradient theory described so far,
we can solve following boundary value problem.
- Equilibrium equation :
0i;+Fa=0 (16)

- Constitutive equation :

o' —*[M b\/ ";l}fzﬂb L ] (17)
0i;=—p0i+ 0% (18)
- Incompressibility condition :
v;,:=0 (19)
- Boundary conditions :
0i1;=h; (20)

Vi=0; (21>

F4 represents distributed force vector acting on
entire analysis domain. p, %; and v; stands for
hydrostatic pressure, traction vector and velocity
vector of particle. The strain rate tensor, &; is
1/2(vs;+
Vii) . : represents equivalent strain rate and is
(2/3&:€:) ™.

Equilibrium equation can be rewritten in terms

related with velocity gradient, i.e., &;=
defined as =

of velocity and hydrostatic pressure by substitu-
ting the constitutive equation and the strain rate-
velocity relation into Eq. (16). Solving this equa-
tion with the boundary conditions, Egs. (20) and
(21) we can obtain velocity and hydrostatic pres-
sure field. The velocity and hydrostatic pressure
fields are then substituted for the definition of

strain rate, equivalent strain rate and stress.
3. Numerical Implementation

3.1 Plane strain deformation

A plane strain compression problem (&z;=0)
where material size is 1~15 um is taken as an
example. Friction between tool and workpiece is
assumed tiny and therefore shear strain is negligi-
ble (&xy=0).
formed plastically, incompressibility condition

In this case, since material is de-

(exx+ew=0) is satisfied. Strain at an element is
Exx— T Ey—E& (22>

The components of the strain gradient are listed

in Table 2. From Eq. (13), the equivalent strain

Table 2 Strain gradient tensor for 2-D compression

problem
Strain gradient Strain gradient Non-zero

tensors components terms™
/3881 i1t E1— &1
iz E12,1F 12,1 — E11,2 — &2
21 611,2+821,1_€12,1 &E,2
722 €122+ €221 €122 — &
7211 &1, E11,2— €211 &2
212 &22,1 + €12,27 E21,2 — &1
7221 &21,2 + €21,1 &22,1 &,1
7222 Ea2,2F €222 Ex22 — &2

*Note: €11= — &z=¢ by incompressibility condi-
tion and &;2=¢&2,=0 from assumption.
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gradient for this example is expressed as fol-

EHE) e

Equation (23) shows that equivalent strain gra-

lowings

dient at an element is a square root of sum of x-

direction strain gradient and y-direction one.
To examine the size effect on strain gradient of

polycrystalline copper, we design two cases, as

shown in Table 3. Case 1 was designed since the
intrinsic material length of polycrystalline cop-
per was calculated as 1.54 um. Case 2, ten times
greater than the intrinsic material length, was also
taken into account to see the difference when the
material size increases significantly beyond the
intrinsic material length.

Figure 1 shows finite element meshes before
and after deformation, and boundary conditions
for two cases. Friction between tool and work-

Table 3 Specimen size and deformation conditions

Initial Initial Reduction Die (tool) . Distributed

. . . . Friction
height width ratio velocity, vpie coefficient force, Fq
[m] [ pm] (%] [m/sec] [N/ pm?®]

Case 1 1.54 0.77 30 0.1 0.0 10
Case 2 15.4 7.7 30 0.1 0.0 10
Vo= VpeG=0  Die |

1 %% compression

vo=0 =0 i

o=0 o=0
1.54pm

vi=0
o=0
Initial shape CASE 1 Deformed shape
_ | Vo= VD, 0= 0
[}

Vp=0

G(:O
154ym

10.78um
X
V=0
o=0
Initial shape Deformed shape

CASE 2

Fig. 1 Boundary conditions and finite element meshes for the two-dimensional compression problem
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piece is assumed to be zero. Deformed mesh il-
lustrates no shear deformation since no friction
was allowed. We also studied the evolution of
stain gradient distribution depending upon a dis-
tributed force as well. The distributed force was
given to the governing equation in terms of an
artificial body force.

3.2 Calculation of element strain
Strain at an element, € can be determined by
substituting Eq. (22) and condition, €x=0 into

the equivalent strain, €=v2/3e;¢e;;
€ (24)

Equivalent strain for an infinitesimal time step,
At is updated using following form

gD = g(k) | (RtD) A p(R+1) (25)

where (k+1) and (%) represents the time, ¢ +A¢
and time, f.

3.3 Calculation of element strain gradient

To calculate the strain gradient tensor, i.e. the
spatial derivative of strain tensor, we adopted
the method of least square. Using this method,
we can determine a least square surface, which
consists of a corresponding element and elements
surrounding it (Fig. 2). It is assumed that the
distribution of strain along elements is continuous
and does not have a radical change.

The number of elements included in the least
square surface is determined by the number of
elements surrounding the corresponding element.
A set of elements included in the least square
surface for the corresponding element is called
“element cluster” hereafter. The number of ele-
ments in the element cluster is more than nine.
If the number of elements is less than nine, an
element layer is then added.

As a least square function, we choose a quad-
ratic function as follows :

(&) m=(Bo) m+ (B1) mx + (B2) my + () mxy
+ (,84> mx?+ (55) myz

where (&), represents the quadratic function at

(26)

m™ element and (B) n~ (s) m coefficients. x and
y stands for coordinates of the element cluster. It

£yh

Least square surface

/ . -
------- : Vi The corresponding
/ it element that strain
/ I / P gradient is caleulated

Element clusier
Fig. 2 Schematic diagram of an element cluster and

least square function of strain components

is defined the solution of the Eq. (26) to be the
coefficient (o) m~ (85) m that minimize the sum of
the square, ¥

T=31[ (&) i— (&) u]? (27)

=1
where 7 is the entire number of element in an
element cluster and (&) ; represents the value for
strain in the element cluster. In order for Eq. (27)
to be minimum, its partial derivatives with respect
to (Bo) m~ (Bs) m, should be equal to zero

0Un

=0, (p=0,1, ---, 5 28
VAP ) 28)
Equation (28) is rewritten in a matrix form as
followings
[ n n n n ) n s [ n
”;Xi i;yi ;Xﬂh‘ Z}xl' Z‘{yz ;(di
Lo, d L e A |
;}Xi gxiyi ;xm E%i Z{xt‘yi (B m ;1%'(6):'
n n n n (ﬂl)m n
Y gk Xk Bt 2 yile)s
=1 =1 =1 =1 (ﬂZ)m — =1 (29)
Lot g G sl (B)n :
symm leiyi ;Xﬂ/i Elxiyi 2%1‘3&'(5)1
HEERER) ),
n n n
gx? Z}x?y? | (B)a) le?(e)z
z 4 2 2
Ziyi ;yf(e)f

Solving Eq. (29) gives the coefficients, () m~
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(Bs) m and consequently the quadratic function at
m™ element, i.e., Eq.(26), is fully determined.
Finally, the strain gradient at '™ element is ob-
tained by differentiating the quadratic function

with respect to x and y, respectively

2(&)m

(e maTgm o)
= (ﬁ1> nt (,83) my +2(ﬁ4> mX
_0(&)m

(&y)m'vT (31)
= (Bz) mnt (33) mx+2</35> mYy

3.4 Computational procedure

In the following, entire procedures which an-
alyze plane strain compression problem using
finite element method coupled with the strain
gradient plasticity theory are described in detail.

Step (1) Generate finite element mesh and pre-
scribe input parameters and boundary conditions
for a given analysis domain.

Step (2) Based on the equivalent strain (&)
and equivalent strain gradient (7), compute the
flow stress (o) to evaluate an element stiffness
matrix of finite element formulation. For the very
first time step, € and 7 are given as input data,
which are usually zero.

Step (3) Perform the finite element analysis to
obtain nodal velocity as a solution. From the
strain rate — veloctiy relations, calculate strain
rate at each element. The details of finite element
formulation and computational procedure of this
step are well described in the reference, Kobayashi
et al., 1989.

Step (4) Update mesh coordinates to be used
for next time step, X=X VEDA A,
X®**D and V**V denote the nodal coordinate and
nodal velocity vector at time step £+ 1. A¢%**D re-
presents the (k1) ¢4 time step size. On the basis
of the equivalent strain rate (é) , equivalent strain
(&) is computed, &%V =g®) 4 g=+DA -+,

Step (5) To calculate the strain gradient, de-
termine the range of the element cluster. It is bas-
ed on the nodal connectivity of mesh system used
in finite element analysis, as shown in Fig. 2.

Step (6) Apply the method of least square to
the elements belonging to the element cluster and

START

Construct the finite element mesh
for initial shape of workpiece

Caleulate element flow stress based on
equivalent strain and strain gradient

!

Finite element simulation
at current time step k

Next time step +
k=k+1

Update mesh system and
equivalent strain

v

Determine element cluster for each
element

v

Perform the least square method and
calculate element strain gradient

A

STOP

Fig. 3 Flow chart which conducts the finite element
analysis coupled with strain gradient plas-
ticity

obtain the least square function (LSF). The LSF
(Eq. (26)) is calculated repeatedly as many as the
total number of element included in analysis
domain.

Step (7) Calculate the strain gradient compo-
nents through differentiating the least square func-
tion with respect to x and y direction. Each ele-
ment has the two components of strain gradient in
this numerical example. Compute the equivalent
strain gradient at each element using the Eq. (23).

Step (8) Perform solution process until the
amount of loading and/or time step reaches the
target. Otherwise, repeat the step (2) ~ (7).

The above steps are summarized as a flow
chart (Fig. 3).

4. Results and Discussion

Figure 4 shows the distribution of equivalent
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0.42

0.41

0.4

0.39

0.38

- 0.37

_F =1+ o i —F
(a)
Present method

CASE 1

(c)
Present method

Equivalent _{ |
strain

()
Conventional method

CASE 2

Fig. 4 Distribution of equivalent strain for two cases (See Table 3)

strain for two cases. In Fig. 4(a) and (b), we can
observe a distinct difference of equivalent strain
distribution when material size is less than the
intrinsic material length. Equivalent strain distri-
bution in Fig. 4(a) is very smooth, compared
with Fig. 4(b). This indicates when the material
size reaches its intrinsic material length, the effect
of strain gradient becomes noteworthy and a re-
gion where the effect of strain gradient is activated
experiences more deformation hardening.

When material size increases significantly like
Case 2 (Fig. 4(c) and (d)), on the other hand,
the distribution of equivalent strain is almost the
same for both methods. These results illustrate
clearly the size effect. In other words, both methods
(strain gradient plasticity and conventional plas-
ticity) yield almost the same results when the
material size is far beyond its intrinsic material
length.

It should be noted that lower part of material in

Fig. 4(c) and 4(d) underwent a barreling during
deformation. This is, however, a deformed shape
due to the distributed force applied to the gov-
erning equation. Since the material size of Case 2
is 10 times bigger than that of Case 1, the dis-
tributed force increases 100 times owing to the
increase of acting volume. Subsequently upper
part of material pushes its lower part and finally,
lower part of material is deformed laterally.
Figure 5 shows the distribution of equivalent
strain gradient for two cases. Like the distribu-
tion of equivalent strain, the distribution of the
equivalent strain gradient with the strain gradient
plasticity theory considered is quite different from
those with the conventional plasticity theory. In
Fig. 5(a) almost no equivalent strain gradient
is observed except at the region where the tool
contacts material (workpiece). While, in Fig. 5
(b), we can observe some distributions of equiv-
alent strain gradient. Figure 5(c) and (d) also
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Conventional method
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strain
gradient
[1/pm]
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(c)
Present method

()
Conventional method

CASE 2

Fig. 5 Distribution of equivalent strain gradient for two cases (See Table 3)

illustrates barreling-like shape due to the dis-
tributed force and the increase of acting volume as
well. It shows as material size increases the distr
-bution of equivalent strain gradient obtained
from two methods become similar, as expected.
Figure 6 illustrates the distribution of geome-
trically necessary dislocation density (GND) for
Case 1. Considering the gravitational force of
copper is 8.7X1078 [uN/um®], the prescribed
distributed force is a very big external force acting
on the material. For comparison purpose, such a
force is applied to examine the effect of distri-
buted force on GND and subsequently the distri-
bution of strain gradient. Note that GND is di-
rectly related with strain gradient (see Eq.(7)).
Figure 6 (a) shows that when the distributed force
is zero, GND density is also almost zero. As the
distributed force increases to 5 [ N/ um®] and 10
[#N/pum®], GND density increases significantly.
(Fig. 6(b) and (c)). This indicates the distribut-

ed force influences the strain gradient distribu-
tion when micrometer-sized material is deformed
plastically. Similar to the distribution of equiva-
lent strain gradient, GND density is low at most
region of the material. But GND density is large
at the corner where tool (die) and material con-
tact each other. Hence, equivalent strain gradient
is large at the corner.

Figure 7 shows the equivalent strain — nor-
malized flow stress relation of polycrystalline
copper at three points during deformation. Ac, Bc
and Cc represents the flow stress calculated by
conventional plasticity, and As, Bs and Cs the
flow stress calculated by strain gradient plasticity.
If we look at the points, Ac, Bc and Cc we can
observe that the magnitude of equivalent strain
and flow stress at these points are in order.
Meanwhile, when the concept of equivalent strain
gradient, 7 is introduced, the order of the other
points (As, Bs and Cs) are changed and those
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magnitudes are not in order anymore. It is ob-
served that as the strain gradient concept is set up
in the constitutive equation, the flow stress at all
three points increases. But the path changes of
equivalent strain at the points are different. The
equivalent strain at points A and B reduced. On
the other hand, the one at Point C increases.
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Reciprocal flow stress curve at each effective
strain gradient for the CASE 1. Ac, B¢ and Cc¢
represent the flow stress calculated by con-
ventional plasticity at element A, B and C.
As, Bs and Cg stand for the one calculated by
strain gradient plasticity at element A, B and
C. The points (A, B and C) move due to
introduction of the equivalent strain gradient,
7 in the constitutive equation (Eq. (17))

These behaviors are attributable to the distributi-
on of strain gradient.

5. Concluding Remarks

There have been a lot of efforts to examine the
size effect of micro-sized material subject to plas-
tic deformation using the finite element method.
These tries were, however, inadequate since the
governing equation developed for describing de-
formation behavior have been used with the ma-
terial size diminished simply. In this work, we
have employed the strain gradient plasticity theo-
ry together with finite element method to examine
the size effect of micro-sized material. We cal-
culated the strain gradient at each element using
the least square function. For demonstrating the
size effect during deformation, the finite element
method coupled with the intrinsic material length
concept has been applied to a plane strain defor-
mation problem.

When material size is less than its intrinsic
length the strain gradient becomes significant. If
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the material satisfying above condition is de-
formed plastically, an additional work hardening
occurs at the region where the strain gradient
effect is noteworthy. This results in a uniform dis-
tribution of strain in the material being deformed.
This might be a typical phenomenon occurring in
the material whose size is less than its intrinsic
length. The distributed force influences consi-
derably the distribution of strain gradient. The
distributed force magnifies the strain gradient
and augments geometrically necessary dislocation
density.

The results of this study may contribute to the
deformation analysis and design of micro-sized
material in the micro-forming, micro-machining
and residual stress analysis of micro-electronic
packaging.
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